
Applications Services

Design Review

Thor DP3

17 November 97
Version 2.1

Applications Services 2 11/20/97 8:45 AM

1. Application Services

1.1 Application Services Introduction

1.1.1 Application Services Overview

Application Services (CM symbol ASV) is a collection of Object Oriented classes that encapsulate APIs
providing an interface between User or Systems Applications and Systems Services. This protects
applications from any changes in the underlying Systems Services interface, as well as protecting system
services from changes in CLCS application tools. Subsequent adaptations to System Services can thus be
accommodated through Application Services without altering the applications themselves.

Application Services CSCs are:
• FD Services (Thor)
• Constraint Management Services (Thor)
• User Display Services (Thor)
• Math Model Services (post-Redstone)
• End Item Manager Services (Thor)
• Prerequisite Control Services (Thor)
• Test Application Script (TAS) Services (post-Thor)
• User Advisory Services (post-Thor)

• Sub-System Services (Thor)

Application Services Conceptual Diagram

FD
Services

Sub-
System
Services

User
Display
Services

Desktop
Debug

Interface

Application
Services

Applications Services 3 11/20/97 8:45 AM

1.1.2 Application Services Operational Description

Application Services provides applications with an object-oriented interface to underlying services.
Application Services implements a C++ layer that provides data type checking similar to the GOAL
language.

1.2 Application Services Specifications

1.2.1 Application Services Ground-rules

1. All Application Services will provide C++ APIs, using the approach agreed to with User Applications
on 6/4/97.

2. Application Services will be implemented in C++ using single inheritance and minimal reference
(pointer) usage to support possible future transitions to languages such as Java.

1.2.2 Applications Services Common Functional Requirements

This section defines requirements common to all Application Services APIs.
1. Application Services shall return status to the calling application on the success or failure of every API

call made to an Application Service.
2. When an Application Services API call fails, the Application Service shall send an error message to the

System Message Writer specifying the reason for any failure condition.

1.2.3 Application Services Performance Requirements

Thor performance requirements are listed separately for each CSC.

1.2.4 Application Services Interfaces Data Flow Diagrams

Application Services External Data Flow Diagram
Applications

Application
Services

Platform

Interface Layer

Tailored ServicesBasic Services
FD

SVCs
DDE
INF

SS
SVCs

UD
SVCs

EIM
SVCs

TAS
SVCs

PCL
SVCs

User Applications

EIMs TASs
SL

Dsplys

System Applications
Sys

Vwrs
CMD
Dsplys

Command

CMD Auth

Data Distribution

DD CMDH DF

System Services
NRS
CLM

Log
SVCs

Event
SVCs

Print
SVCs

Sys
MSGs

Timer
SVCs

Network Support
TCP/

IP HWOS
X/

Motif

Applications Services 4 11/20/97 8:45 AM

2. Function Designator (FD) Services

2.1 FD Services Introduction

2.1.1 FD Services Overview

“This service provides Function Designator (FD) measurement and stimulus data.” FD Services shall
perform the following services:
• Provide APIs allowing applications to access 1processed value FDs.
• Provide APIs allowing applications to access queued multi-sample FDs.
• Provide APIs allowing applications to write FDs.

Function Designator (FD) Services provides applications a set of type-safe common access methods for
reading and writing FD data values. These data values are stored in the OLDB, the Current Value Table
(CVT), and the algorithm tables (per C. King, 5/17/97).

FD Services Conceptual Diagram

Applications

FD
Svcs

Application Services

EIMs
SL

Displays
DD CVT

System ApplicationsUser Applications

System
Viewers

CMD

OLDB

2.1.2 FD Services Operational Description

FD Services provides a thin layer between applications and systems software. This thin layer ensures that
changes made to underlying systems layers do not cause impacts across the range of user applications, and
that changes in user applications tools do not cause impacts to systems services. FD Services provides a
C++ implementation of the types and type checking available in GOAL.

2.2 FD Services Specifications

2.2.1 FD Services Ground-rules

• FD Services performs all FD reads (including pseudo FDs) via Data Distribution.
• FD Services performs all FD writes via Command Support.
• The OLDB will be read-only.
• There will only be one OLDB per target CLCS “set”.
• FD Services will use the OLDB provided by System Build CSCI.
• FD Services makes no distinction between pseudo-FDs and real FDs.
• FD Services will provide for all FD accesses an atomic set of value, time and health.

1 Counts are not contained in the Current Value Table. Having access to counts may be an issue for a later
delivery.

Applications Services 5 11/20/97 8:45 AM

• For each Time Homogeneous Data Set (THDS) present in the TCID the OLDB will contain a THDS
FD.

• THDS FDs will be designated by a specific and unique FD type designation in the OLDB.
• Enumerated FDs will be designated by a specific and unique FD type designation in the OLDB.
• FD Services will inherit objects from Application Services Subsystem Services for interactions with the

Command Interface.

2.2.2 FD Services Functional Requirements

The following paragraphs define the FD Services functional requirements:
• Read FDs
• Read Queued Multi-Sample FDs
• Write 2 FDs
Read FDs
1. FD Services shall provide an API to read the current data value for any valid FD.
2. FD Services shall provide an API to read the current value of an analog FD in engineering units for

the analog FD types defined in CLCS System Level Specification, 84K00200-000, pre-release 1,
dated 15 April 1997

3. FD Services shall provide an API to read the current value of a digital pattern FD.
4. FD Services shall provide an API to read the current value of a discrete FD for the following

engineering unit types:
4.1. Open / Close
4.2. True / False
4.3. Wet / Dry
4.4. On / Off.

5. FD Services shall provide an API to read the current value of a discrete FD in raw format.
6. FD Services shall provide an API to read the time of the last change in value of the FD.
7. FD Services shall provide an API to read the health status of the last change of an FD.
8. FD Services shall provide the capability to access all current data attributes from the OLDB for

any valid FD.3

9. FD Services shall provide an API to read an FDs current value, time of last value change, and
health status in a single request.

10. FD Services shall provide an API to read calibration data as FDs from the Gateways.
11. FD Services shall provide the capability to sequentially read all FD information from the OLDB.
12. FD Services shall provide an API to read the ASCII text string associated with a specified health

reason or warning code.
13. FD Services shall provide the capability to read the current value of a enumerated FD.
14. FD Services shall provide the capability to read Time Homogeneous Data Sets (THDS) of FDs.
15. FD Services shall provide an API to access all current data attributes from the CVT for any valid

FD.

Read Queued Multi-Sample FDs
1. FD Services shall provide Queued multi-sample service to applications for any valid FD.
2. FD Services shall provide an API to identify that an FD should be delivered via queued service

(multi-sample registration and de-registration).
3. FD Services shall provide an API to access every change value in time sequential fashion.
4. FD Services shall provide an API to read the next value of a multi-sample FD.
5. FD Services shall provide an API to read the next N values of a multi-sample FD.
6. FD Services shall provide an API to clear all queued samples pending for the application.
7. FD Services shall provide an API to notify user applications when multi-sample queued data is

available for a relevant FD.

2 There is no distinction between real and pseudo FDs in the non-command CLCS design. Command
Management understands that pseudo-FDs are not associated with a gateway and makes a Data Distribution
API call to distribute the change value.
3 Additions to the OLDB for Thor include fields to support PCL, and Gateway change data output types.

Applications Services 6 11/20/97 8:45 AM

8. FD Services shall provide an API to start queued multi-sample delivery by FD.
9. FD Services shall provide an API to stop queued multi-sample delivery by FD.
Write FD
1. FD Services shall provide an API to write values to analog output FD’s.
2. FD Services shall provide an API to write a value to discrete output FD’s.
3. FD Services shall provide an API to write discrete output FD’s using the following discrete data

types: OPEN, CLOSE, TRUE, FALSE, WET, DRY, ON, OFF.
4. FD Services shall provide an API to write a value to digital pattern output FD’s.
5. FD Services shall provide an API to write a time value in a TBD time format.
6. FD Services shall provide an API to write failure and warning reason codes for an FD.
7. FD Services shall provide an API to write failure and warning reason codes for a list of FDs.
8. FD Services shall provide an API to write failure and warning reason codes for a predefined list of

FDs specified by a “group name”.

2.2.3 FD Services Performance Requirements

• No specific performance requirements have been established for the FD Services Thor delivery.

2.2.4 FD Services Interface Data Flow Diagrams

FD Services External Data Flow Diagram

FD Services

THDS
Definition

CVT

Health
Message

Authent
ication

Subsysten Services

S
Y
S
T
E
M
/
U
S
E
R

A
P
P
L
I
C
A
T
I
O
N
S

Constraint
Management

Interface

Application Services

FD Queue Services

Constraint
Management

Data
Fusion

Data
Health

UserDisplay Services
Update

Displays

Command
Management

FD CMD & Responses

FD Object
Instance

FD Factory

FD Dictionary

Data
Distribution
Processor

Command
Interface

Data
Fusion

Constraint
Data

x

System Viewers

x

x

System

x

x

EIM

x

x

User Displays

x

x

CMD Processor/
CMD Script

x

ENUM
Definition

Reason
Code

CVT
Data

FD
ObjectInstanceFD

ObjectInstance

FD Queue
FD Queue

FD Queue

FD Name

FD Object Reference

Creates
FD

Object

FD CMD

Set Health Codes

FD Value
FD Info
FD CMD Response
FD Health Reason Code Text

Assert/Alter/Release/Interrogate
Constraints

Lookup FD by Name

Register FD

FD Object Reference

Queued Data for
Registered FDs

FD Info

OLDB
FD

Info

Constraints
 -Applied
 -Queried
 -Altered
 -Released

FD Info

Set Health Code

Applications Services 7 11/20/97 8:45 AM

2.3 FD Services Design Specification

The FD Services CSC is object oriented. FD Services will be implemented in C++ as a collection of classes
contained in a library that is linked into software applications wishing to utilize the FD Services interface.
FD Services supports creating a library that contains FD object instances for a particular TCID. FD
services provides an executable that is maintained in the System build process that is utilized as part of the
TCID build process to generate the FD object instance library.

FD
Class

Methods
(API)

FD
Class

Definitions
(API)

FD Object Instantiation and Compialiation Process:

DBSAFE

"asv_fdsFunctionDesignator.h" "asv_fdsFunctionDesignator.C"

"CLCS_Application.C"

".h" File

".C" FIle

"libfdServices.a"

OLDB
"fdInstanceGenerator"

extern AM_GSE_PSIG
GMMP0371A;

.

.

.

AM_GSE_PSIG
GMMP0371A();

.

.

.
"libfdObjects.a"

#include
-or-

extern

Compile
and
Link

CLCS
Application

Grouped by
OLDB RSYS

The following page provides an object class diagram for FD Services.

Applications Services 8 11/20/97 8:45 AM

F
unction D

esignator

-cvt: C
urrent V

alue T
able

-nam
e: char*

-nom
en: char*

-units: char*
-fdid: int

+
F

unctionD
esignator(const char* nam

e, const
char * nom

en, const char* units, in fdid, C
urrent-

valueT
able&

 cvt)
+

fdid(): int
+

nam
e(): const char*

+
nom

en(): const char*
+

units(): const char*

C
V

T
 Interface

+
setV

alue(int fdid, ...)
+

getV
alue(int fdid, ...)

O
L

D
B

 Interface

D
ata Fusion Info Interface

T
B

D

T
B

D

A
nalog M

easurem
ent

+
A

nalog M
easurem

ent(const char* nam
e, const

char* nom
en, const char* units, int fdid)

+
getV

alue(): float

D
iscrete M

easurem
ent

+
D

iscrete M
easurem

ent(const char* nam
e, const

char* nom
en, const char* units, int fdid)

+
getV

alue(): bool

D
igital Pattern M

easurem
ent

+
D

igital Pattern M
easurem

ent(const char* nam
e,

const char* nom
en, const char* units, int fdid)

+
getV

alue(): int

A
nalog S

tim
ulus

+
A

nalog Stim
ulus(const char* nam

e, const
char* nom

en, const char* units, int fdid)
+

setV
alue(const float)

D
iscrete S

tim
ulus

+
D

iscrete S
tim

ulus(const char* nam
e, const

char* nom
en, const char* units, int fdid)

+
setV

alue(const bool)

D
igital Pattern S

tim
ulus

+
D

igital Pattern S
tim

ulus(const char* nam
e,

const char* nom
en, const char* units, int fdid)

+
setV

alue(cont int)

A
M

_A
M

P

+
A

M
_A

M
P

(const char* nam
e,

const char* nom
en, const char* units, int fdid)

+
value(): A

M
P

D
M

_O
N

_O
FF

+
D

M
_O

N
_O

FF
()

+
value(): O

N
_O

FF

D
P

M
_B

IN

+
D

P
M

_B
IN

()
+

value(): B
IN

A
S

_PS
IA

+
A

S
_P

SIA
()

+
apply(const PS

IA
&

)

D
S

_O
N

_O
F

F

+
D

S
_O

N
_O

FF
()

+
set(const O

N
_O

F
F&

)

D
P

S_B
IN

+
D

P
S

_B
IN

()
+

issue(const B
IN

&
)

A
pplication

D
ata D

istribution

D
ata D

istribution Interface

F
D

 M
ulti-S

am
ple Q

ueue

E
ngineering U

nit

have

-char F
D

N
am

e[11]
-char N

om
enclature[35]

...+
F

D
N

am
e(): const char*

+
N

om
enclature(): const

char*
...

1+

F
D

 C
om

m
anding Interface

S
ends com

m
and through

1+

1+

T
im

e ordered
F

D
 data

D
elivers

R
equested

F
D

 values

R
equests M

ulti-Sam
ple

D
elivery

R
etrieves

F
D

 data
from

C
ontains

M
ulti-Sam

ple
data for

-F
D

N
am

e: char*
-fdid: int

creates

perform
s com

putations
w

ith

+
getnextvalue():

+
clearqueue(): bool

+
fdsubscribe(fdnam

e)
+

fdaddcallback(fdnam
e)

+
fdunsubscribe(fdnam

e)

+
issue(const B

IN
&

)
+

set(const O
N

_O
F

F&
)

+
apply(const PS

IA
&

)

D
_B

IN

+
issue(const B

IN
&

)
+

value(): B
IN

P
rovides

D
ata V

alue
H

ealth
T

im
e

P
rovides detailed

F
D

 Inform
ation

P
rovide

F
usion

A
lgorithm

and com
ponent

F
D

 nam
es

A
nalog

D
iscrete

D
igitalPatern

-value: int

-value:float

-value:bool

+
setV

alue(float)
+

getV
alue():float

+
setV

alue(bool)
+

getV
alue():bool

+
setV

alue(int)
+

getV
alue():int

A
_A

M
P

+
apply(const A

M
P&

)
+

value(): A
M

P

+
set(const O

N
_O

F
F&

)
+

value(): O
N

_O
FF

D
_O

N
_O

FF

Applications Services 9 11/20/97 8:45 AM

2.3.1 FD Services Detailed Data Flow

This diagram provides a pictorial representation of the data flow between applications, Data Distribution,
Data Health, Data Fusion, and FD Services objects.

Data
Distribution

DD(CVT)

OLDB

FD
CMD

CLCS
Application

2.0
FD Read and Write

Service

1.0
Process

Queued Multi-Sample
FDs FD Registration

for Multi-Sample
data

Multi-Sample
FD data

FD OLDB data

Current FD
- value
- health
- time

FD Write

FD
Write

FD Info

100ms
sample

of FD data changes

Current FD
- value
- health
- time

Detailed Data Flow for FD Services

2.3.2 FD Services External Interfaces

2.3.2.1 FD Services Message Formats

The following are the System Messages output by the FD Services CSC.

Message Number = ASV_FDS_CVT_ATTACH_ERROR
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services unable to access CVT for Process Name #ARGUMENT1# reason #ARGUMENT2# -
#ARGUMENT3#

ARGUMENT1 = ASCII character string representing UNIX process name.
ARGUMENT2 = unsigned integer representing UNIX error number value.
ARGUMENT3 = ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Applications Services 10 11/20/97 8:45 AM

Help Information Content:

During application initialization the FD Services interface could not properly attach to Data Distribution’s
CVT shared memory area. Check to make sure that Data Distribution process is running. Also, verify that
the OLDB flat file is present (because Data Distribution needs this file to generate the CVT).

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error.

Message Number = ASV_FDS_QUEUED_FD_INTERFACE_INIT_ERROR
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services Queued Multi-Sample FD interface initialization error for process name
#ARGUMENT1# reason #ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 = ACSII character string representing UNIX process name.
ARGUMENT2 = unsigned integer representing UNIX error number value.
ARGUMENT3 = ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content:

A request from an application to initialize a Queued Multi-Sample FD interface failed. One possible cause
of this error is that Data Distribution did not provide access to the queuing service; please see the system
message file for other errors that occurred during this period (particularly from Data Distribution).

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error. The termination of the Data
Distribution CVT server System Application would cause the interface closure error.

Message Number = specified system message number constant
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services Queued Multi-Sample FD interface error for process name #ARGUMENT1# reason
#ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 = ASCII character string representing UNIX process name.
ARGUMENT2 = unsigned integer representing UNIX error number value.
ARGUMENT3 = ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content:

During Queued Multi-Sample FD operations a UNIX system error was detected. The error could be either
a failed read interface error or a unexpected closure of interface error. This usually would occur if Data
Distribution terminated and restarted (a socket was changed). Please see the system message log around
that time period for any Data Distribution activity.

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error. The termination of the Data
Distribution CVT server System Application would cause the interface closure error.

Applications Services 11 11/20/97 8:45 AM

Message Number = specified system message number constant
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services encountered an error reading from the OLDB file, #ARGUMENT1# reason
#ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 = ASCII character string representing UNIX process name.
ARGUMENT2 = unsigned integer representing UNIX error number value.
ARGUMENT3 = ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content:

FD Services was unable to access data in the OLDB table. The table does not exist in the path specified or
does not have adequate permissions. Verify that the OLDB flat file exists in the proper directory, that read
permission has been granted for that file, and that the TCID is correct.

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error.

2.3.2.2 FD Services Display Formats

FD Services does not provide any displays.

2.3.2.3 FD Services Input Formats

There are no language-like interfaces provided by FD Services.

2.3.2.4 Recorded Data

FD Services does not record data nor initiate data recording.

2.3.2.5 FD Services Printer Formats

FD Services does not provide printed information.

2.3.2.6 Inter-process Communications

Inter-process communications takes place between FD Services and Data Distribution. The Data
Distribution CSC communicates FD data to the FD Services CSC through a UNIX shared memory area
called the Current Value Table (CVT).

The CVT consists of an index area that maps both FD names and FD-IDs to the data portion of the CVT
containing current FD value, the FD’s health bits, the time of the last data change, and the time of the last
health bit change.

Applications Services 12 11/20/97 8:45 AM

The CVT communication is further described in the CLCS Data Distribution to FD Services Interface
Definition Document.

2.3.2.7 FD Services External Interface Calls

The CLCS FD Services Interface Definition Document describes the data sent between the FD Services
CSC and CLCS applications via a calling mechanism.

2.3.2.8 FD Services Table Formats

FD Services utilizes three table internally that are provided by an outside source; these tables are the OLDB
flat file, the THDS definition flat file, and the Enumeration Definition flat file provided by System Build
CSCI. Table format is TBD. An ASCII table will be provided by System Build for Redstone.

2.3.3 FD Services Test Plan

FD Services system-level tests may be run in either or both the IDE or SDE environments. These tests are
run on the basic HCI, CCP or DDP platforms. There are no specific hardware configurations required. The
minimal applications software configuration includes the Data Distribution server and whatever programs
and files are necessary to have the Data Distribution server running. FD Services testing also requires a
CLCS application or a CLCS like-application test tool that exercises the FD read, FD write, OLDB read,
and Queued Multi-Sample FD services.

2.3.3.1 FD Services / Read FDs
Test Objective:
Test and / or Regression test the following FD Svcs capabilities to read FD value and parameter data. This
also verifies this interface returns status to the calling application.
1. Read value, time, & health of FDs (DDP, CCP, & CCW/S) for both raw and EU types:(2.2.2.1.1,

2.2.2.1.7, 2.2.2.1.8,)
1.1. Analog (one or more of each analog data type - TBD data types) (2.2.2.1.2)
1.2. Discrete (one or more of each discrete data type - 8 data types) (2.2.2.1.4, 2.2.2.1.6)
1.3. Digital Pattern (one or more of each of the following data types: Hex, Octal, BCD,

Enumerated Type) (2.2.2.1.3, 2.2.2.1.14)
1.4. Calibration data as FDs from the Gateways (2.2.2.1.11)

2. Verify API can read all current data attributes from the CVT for any valid FD. (2.2.2.1.10)
3. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:

Using known data from a Sim G/W for STS-TBD, use a TBD test application to make calls to FD Svcs
on each subsystem type (DDP, CCP, CCW/S). Use a CVT viewer (CVT_Look) or System Viewer (FD
Viewer) to verify the data matches for that time sample.

Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging / Network Services
• Data Source (PC-GOAL data for STS-TBD feeding into SIM G/W) or equivalent (to provide FD

data values in CVT)
• Search function for Data Source (fast-forward, reverse, stop, pause) for finding FD data changes
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS

Applications Services 13 11/20/97 8:45 AM

• TBD CVT Viewing tool for DDP, CCP, and CCWS CVTs, viewable on a CCWS (CVT_LOOK
from DD or other tool)

• Tool or test application to call FD Svcs (DNAV or equivalent with pre-coded scripts)
Requirement(s):

• SLS Requirement(s): 2.2.3.1.3, 2.2.3.1.4, 2.2.5.2.1, 2.2.5.2.2, 2.2.5.2.3.
• FD Services Requirement(s): 2.2.2.1.1, 2.2.2.1.2, 2.2.2.1.3, 2.2.2.1.4, 2.2.2.1.6, 2.2.2.1.7, 2.2.2.1.8,

2.2.2.1.9, 2.2.2.1.10, 2.2.2.1.11, 2.2.2.1.16, 2.2.2.1.14.
• RTC Applications (User) Requirement(s): 4.2.2.1-7

2.3.3.2 FD Services / Read Queued FDs
Test Objective:
Test and / or Regression test the following FD Svcs capabilities to read FD value and parameter data. This
also verifies this interface returns status to the calling application.
1. Read value, time, & health of Queued FDs for both raw and EU types: (2.2.2.2.1, 2.2.2.2.2,

2.2.2.2.3)
1.1. Analog (one or more of each analog data type - TBD data types)
1.2. Discrete (one or more of each discrete data type - 8 data types)
1.3. Digital Pattern (one or more of each of the following data types: Hex, Octal, BCD,

Enumerated Type)
2. Read next value of a multi-sample FD. (2.2.2.2.4)
3. Read next N values of a multi-sample FD. (2.2.2.2.5)
4. Clear all queued data pending for an application (2.2.2.2.6)
5. Notify user applications when multi-sample queued data is available (2.2.2.2.7)
6. Start queued service to an FD. (2.2.2.2.8)
7. Stop queued service to an FD. (2.2.2.2.9)
8. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:

Using known data from a Sim G/W for STS-TBD, use a TBD test application to make calls to FD Svcs
on each subsystem type (DDP, CCP, CCW/S). Use a CVT viewer (CVT_Look) or System Viewer (FD
Viewer) to verify the data matches for that time sample.

Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging / Network Services
• Data Source (PC-GOAL data for STS-TBD feeding into SIM G/W) or equivalent
• Search function for Data Source (fast-forward, reverse, stop, pause) for finding FD data changes
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• TBD CVT Viewing tool for DDP, CCP, and CCWS CVTs, viewable on a CCWS (CVT_LOOK

from DD or other tool)
• Tool to examine CVT values
• Tool or test application to call FD Svcs (DNAV or equivalent with pre-coded scripts)

Requirement(s):
• SLS Requirement(s): 2.2.3.1.3, 2.2.3.1.4, 2.2.5.2.1, 2.2.5.2.2, 2.2.5.2.3.
• FD Services Requirement(s): 2.2.2.1.1, 2.2.2.1.2, 2.2.2.1.3, 2.2.2.1.4, 2.2.2.1.6, 2.2.2.1.7, 2.2.2.1.8,

2.2.2.1.9, 2.2.2.1.10, 2.2.2.1.11, 2.2.2.1.16, 2.2.2.1.14.
• RTC Applications (User) Requirement(s): 4.2.3.1-5

2.3.3.3 FD Services / Write FDs
Test Objective:
Test and / or Regression test the following FD Svcs capabilities to write FD value and parameter data:
1. Write value of FDs at a CCW/S:

1.1. Analog (one or more of each analog data type - TBD data types) (2.2.2.3.1)

Applications Services 14 11/20/97 8:45 AM

1.2. Discrete (one or more of each discrete data type - 8 data types) (2.2.2.3.2, 2.2.2.3.3)
1.3. Digital Pattern (one or more of each of the following data types: Hex, Octal, BCD,

Enumerated Type) (2.2.2.3.4)
1.4. Time values in the following formats (JTOY, CDT/MET, others?) (2.2.2.3.5)

2. Write failure and warning reason codes for an FD. (2.2.2.3.6)
3. Write failure and warning reason codes for a list of FDs. (2.2.2.3.7)
4. Write failure and warning reason codes for a list of FDs by “group name”. (2.2.2.3.8)
5. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
The test conductor will use a Command-provided input screen to write the FD value for each FD type (>50
analog types, 8 discrete types, Hex, Octal, BCD, and enum digital types). On another window on the same
W/S, the test conductor will use CVT_Look or an equivalent tool to examine the change in the FD’s value
in the CVT. The test conductor will use the same configuration to write the Health status for an FD
(warning, then failure). A pre-defined list of FDs (in TBD file) will have its health status changed to
warning (and back) and to failure (and back). Each FD in the list will be examined. A pre-defined, named
list will have its health status changed to warning (and back) and to failure (and back). Each FD in the list
will be examined.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN and DCN
• Reliable Messaging / Network Services
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• Command Management or equivalent mechanism to send Writes to Gateways
• Command Processor or equivalent to input FD writes at CCWS
• TBD CVT Viewing tool for CCWS to examine CVT values (CVT_LOOK from DD or other tool)
Requirement(s):
• SLS Requirement(s): 2.2.3.3
• FD Services Requirement(s): 2.2.2.3.1, 2.2.2.3.2, 2.2.2.3.3, 2.2.2.3.4, 2.2.2.3.5, 2.2.2.3.6, 2.2.2.3.7,

2.2.2.3.8.
RTC Applications (User) Requirement(s): 4.2.1.1, 4.2.1.2, 4.2.1.3, 4.2.3.6.

2.3.3.4 FD Services OLDB reads
Test Objective:
Test and / or Regression test the following FD Svcs capabilities:
1. Sequentially read all FD information from the OLDB. (2.2.2.1.12)
2. Read all current data attributes from the CVT for any valid FD. (2.2.2.1.16)
3. Query the OLDB by FDID or FD name. (user rqmt 4.2.5.1)
4. Query any piece of information stored in the OLDB for a particular FD. (user rqmt 4.2.5.2)
5. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
From a TBD Viewer on a CCWS, the test conductor will select an FD by FDID and request all OLDB data
for that FD. Then the test conductor will select an FD by FD name and request all OLDB data for that FD.
The data on the display will be compared to that printed from the OLDB.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• CCWS platform
• Thor TCID, with Fusion FDs and pseudo FDs defined
• TBD CVT Viewing tool for DDP, CCP, and CCWS
• Tool to examine OLDB values (TBD)
Requirement(s):
• SLS Requirement(s): N/A
• FD Services Requirement(s): 2.2.2.1.12, 2.2.2.1.16.

Applications Services 15 11/20/97 8:45 AM

• RTC Applications (User) Requirement(s): 4.2.5.1, 4.2.5.2

2.3.3.5 FD Health Services (User requirements)
Test Objective:
Test the following FD Health Svcs capabilities to determine the health of an FD and to read the detailed
health status for FDs:
1. Read FD’s health status (OK, FAILED, WARNING): (4.2.4.4.1)

1.1. For one (or more) FDs for each Gateway type supported in Thor (Consolidated SDS,
others?)

1.2. For Analog, Discrete, and Digital Pattern FD types (one or more of each data type)
1.3. For Pseudo FDs (?)
1.4. For Time value FDs (?)

2. Read the detailed health status for one or more FDs: (4.2.4.4.2)
2.1. Was the last value change or refresh data?
2.2. Is processing active or inhibited for this FD?
2.3. Is gateway group processing active or inhibited for this FD?
2.4. Is Engineering active or inhibited for this FD? (same as #7? - Check with Rich Ikerd.)
2.5. Is the data path associated with this FD active or inhibited?
2.6. Is application advisory notification active or inhibited for this FD?
2.7. Is engineering bypass active or inhibited for this FD?

3. Verify each API call returns correct status (success only).
Test Approach Summary:
The test conductor will read the health status for an FD (nominal = OK) using a Health Viewer (or
equivalent) at a CCWS. From another window on the CCWS, the test conductor will change the health
status to Warning, then to Failed, then back to OK.
The test conductor will read the detailed health status using the Data Health Viewer at the CCWS. Note:
There may be limited detailed health status available at CIT time. This may require a delta CIT prior to
System Test, or may require additional testing during System Test.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100baseT) and DCN (FDDI)
• Reliable Messaging or equivalent / Network Services
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Gateways (Consolidated SDS, GSE, LDB, others?)
• Data Distribution / CVT on DDP, CCP, and CCWS
• Data Distribution must provide a new bit specifying whether each FD data value is change data or

refresh data (4.2.4.4.2.1).
• Data Health with full detailed health status for FDs.
• TBD Health Viewer or equivalent mechanism to set FD health status / detailed status at CCWS
Requirement(s):
• SLS Requirement(s): 2.2.5.2.1-4, 2.2.5.2.1.8
• FD Services Requirement(s): N/A
• RTC Applications (User) Requirement(s): 4.2.4.4.1, 4.2.4.4.2.1-7, 4.2.4.4.4

2.3.3.6 FD Processing Attributes (User requirements 4.2.1.1, 4.2.1.4, 4.2.1.7-10)
Test Objective:
Test the following FD processing capabilities:
1. Change the sample rate of a GSE FD. (4.2.4.3.1)
2. Change the responsible subsystem for an FD. (4.2.4.3.5)
3. Activate, then inhibit measurement processing for an FD. (4.2.4.3.6)
4. Read the current sample rate of an FD. (4.2.4.3.8)
5. Read the hardware address of an FD. (4.2.4.3.11)
6. Verify each API call returns correct status (success only).

Applications Services 16 11/20/97 8:45 AM

Test Approach Summary:
The test conductor will use a TBD Viewer that can display the following Gateway-related data for an FD:
1. sample rate
2. responsible subsystem (RSYS)
3. measurement processing status (active / inhibited)
4. hardware address
The test conductor will use a Command-provided input screen to change each Gateway processing value for
the FDs tested. The results in the TBD Viewer will be compared to the planned results.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• GSE Gateway, Consolidated SDS Gateway
• Command Management or equivalent mechanism to send Writes to Gateways
• Command Processor or equivalent to input Gateway commands at CCWS
• TBD Viewing tool for CCWS to examine Gateway-related FD processing data
Requirement(s):
• SLS Requirement(s):
• FD Services Requirement(s): N/A
• RTC Applications (User) Requirement(s): 4.2.4.3.1, 4.2.4.3.5, 4.2.4.3.6, 4.2.4.3.8, 4.2.4.3.11

Applications Services 17 11/20/97 8:45 AM

3. User Display Services (UDS)

3.1 User Display Services Introduction

3.1.1 User Display Services Overview

User Display Service (UDS) provides the capability for applications to communicate with the displays.
UDS is a series of common routines provided to application programs giving them the ability to update
visual displays with current Function Designator (FD) values, health, and time. UDS will also provide for
System Viewers and user displays the capability to get current FD information.

UDS Conception Diagram

Subsystem
Services

UDS

User Applications

Application Services

J
A
V
A

System Applications

System Viewers

S
L
-
G
M
S

Data
Handler

FD
Services

Timer
System
Services

Constraint
Management

Command
Support

Data Distribution
Processing

FD
String
Format

Time
APIs

3.1.2 User Display Services Operational Description

User application displays will register with UDS all interested FD names. UDS will provide the displays
with the latest changed values, health, and time of the FD from the Current Value Table (CVT) via FD
Services. To stop updating the FD, user application displays will notify UDS to stop retrieving the latest
data.

UDS will give applications the capability to call System Viewers to retrieve all of the latest FD information
provided by FD Services.

Applications Services 18 11/20/97 8:45 AM

UDS will interface with System Viewers, System Applications, and User Applications. UDS is the layer of
Application Services to separate the user interface from the System Services. UDS provides a collection of
FD as a data handler to manage a list of FDs. The data handler will provide the ability to get the latest
values from the CVT through FD Services to perform updates to the User Display. Multiple types of Data
Handlers will be used to provide information for each system viewer, as well as the ability to get different
types of data to the display.

UDS will also provide a layer common routines for Java displays to call the underlying C++ APIs. UDS
will also provide notification to the viewers of a transition of constraints on an FD. Time display functions
for SL-GMS displays will also be supported, as well as the ability to start an EIM from a display.

3.2 User Display Services Specifications

3.2.1 User Display Services Ground-rules

• UDS will interface to SL-GMS v.5.3 as the Thor CLCS display development tool.
• UDS will interface to Java Development Kit (JDK) v1.1.2.

• User application and System Viewers displays will use UDS to access current data from the CVT and
OLDB.

• UDS will NOT provide queued (multi-sample) nor historical FD data.

• UDS will be object oriented, written in C++ and JDK v1.1.2.

• UDS performance is based upon data update rates to the local CVT.

3.2.2 User Display Services Functional Requirements

1. UDS shall provide a mechanism allowing an FD-related widget on an SL-GMS display to access
the current FD data from the CVT / OLDB without callback programming.

2. UDS shall provide an API allowing System Viewers or user application displays access FD
related information from the CVT/OLDB.

3. UDS shall provide a way for applications to access common library dialog functions to:
3.1. Provide a two step modeless pop up window.

3.1.1. Provide a CANCEL button.
3.1.2. Provide an EXECUTE button.

3.2. Provide a text display modeless pop up window for command formatting errors.
3.2.1. Provide an OK button.

4. UDS shall provide an API to send requested FD related information from user applications

displays to System Viewers (right cursor click).
5. UDS shall provide API’s to update the necessary SL-GMS representation of FD’s with the current

data.
6. UDS shall provide an API to stop updating the SL-GMS display of an FD with the current data.
7. The Data Handler is a collection of FDs used to get the latest values from the CVT. The data

handler can get the latest values from the CVT on an update call.
7.1. UDS shall provide the capability to have a SL-GMS container of Data Handlers with a

SL-GMS Window State associated with each Data Handler.
7.1.1. UDS shall provide the capability to retrieve a Data Handler from the given SL-

GMS Window State.
7.2. UDS shall provide the capability to have a Data Fusion Data Handler.

7.2.1. UDS shall provide the capability to have a list of Data Fused FDs.
7.2.2. UDS shall provide the capability to have a list of FD components with the Fused

FD.
7.2.3. UDS shall provide the capability to have a list of fused FDs and their FD

components up to the level supported by Data Fusion.

Applications Services 19 11/20/97 8:45 AM

7.2.4. UDS shall provide the capability to display the algorithm/description in string
format for a fused FD.

7.3. UDS shall provide the capability to have a Constraint Management Data Handler.
7.3.1. UDS shall provide the capability to get the FD constraint transition with a

particular User class.
7.3.2. UDS shall provide the capability to notify Viewers when a constraint transition

has been met.
7.3.3. UDS shall provide the capability to get FD constraint transitions in the local

Constraint Cache and table to Viewers.
7.3.4. UDS shall provide the capability to give a viewer the FDs constraint expression.
7.3.5. UDS shall provide the capability to give a viewer the FDs constraint transitions.

7.4. UDS shall provide the capability to have a Data Health Data Handler.
7.4.1. UDS shall provide the capability to give the string associated with a health

reason code.
7.5. UDS shall provide the capability to have a System/Subsystem Status Data Handler.

7.5.1. UDS shall provide the capability to get a list of FDs associated with
System/Subsystem Integrity.

7.5.2. UDS shall provide the capability to retrieve data from the System Configuration
Table (SCT).

7.6. UDS shall provide the capability to have a FD Browser Data Handler.
7.6.1. UDS shall provide the capability to get a list of FDs in a user class.

8. FD string formatted functions. FD string formatted functions provide a method to allow the FD
value to be returned in a pre-formatted string instead of the raw value.
8.1. UDS shall provide an API to get an Analog FD value back as a formatted string.
8.2. UDS shall provide an API to get a Digital Pattern FD value back as a string.

8.2.1. As a value in Hex.
8.2.2. As a value in Binary.
8.2.3. As a value in Octal.
8.2.4. As a value in BCD.

8.3. UDS shall provide an API to get a Discrete FD value back as a string.
8.3.1. As On/OFF.
8.3.2. As True/False.
8.3.3. As Wet/Dry.
8.3.4. As Open/Close.

8.4. UDS shall provide an API to get an Enumerated FD type back as the string value.
8.5. UDS shall provide an API to get Time FD values back as a string.

8.5.1. For JTOY.
8.5.2. For GMT.
8.5.3. For CDT/MET.
8.5.4. For the day of year.
8.5.5. For the month of year displayed as a number.
8.5.6. For the month of year as a string.
8.5.7. For the day of month.
8.5.8. For the Year.
8.5.9. For the Day of week displayed as a complete string.
8.5.10. For the Day of week displayed as an abbreviated string.
8.5.11. For time as hours.
8.5.12. For time as hours and minutes.
8.5.13. For time as minutes and seconds.
8.5.14. For time as minutes, seconds, and milliseconds.
8.5.15. For time as seconds, and milliseconds.

9. UDS shall provide a method to call C++ code from a Java Viewer. This will allow the C++
application and system services to be called from a System Viewer written in Java.

Applications Services 20 11/20/97 8:45 AM

3.2.3 User Display Services Performance Requirements

1. UDS will provide access to updates for the user application display once the latest value is stored in the
CVT (UDS performance is based upon data update rates to the local CVT).

2. UDS will provide FD information to System Viewers within one second.

3.2.4 User Display Services Interfaces Data Flow Diagrams

User Display Services Data Flow Diagram

UDS
Data Handler

CCWS

CVT

PCL

Health
Message

Authent
ication

Sub-system
Services

S
Y
S
T
E
M
/
U
S
E
R

A
P
P
L
I
C
A
T
I
O
N
S

Application Services

J
A
V
A

L
A
Y
E
R

FD String/Time
APIs

Format
Request

Time
Calcs.

Constraint
Management

Data
Fusion

Data
Health

SL-GMS
Data

Handler

Update SL
Displays

Command
Management

Timer
System
Services

FD CMD

EIM

Application
Interface

Constraint
Management
Data Handler

Data Browser
Data

Handler

Data Fusion
Data Handler

System Status
Data Handler

Data Health
Data Handler

Get FDs

Get Reason
Code

Get Integrity
FDs

Get Fusion
Components

Get User Class
FDs

Get Constraints
And Exceptions

Data
Distribution

Processor

Command
Interface

FD
Info

Constraints

Data
Fusion

FD Services

Constraint
Data

x

DMON/Status/Plot
FD Viewer

x

x

Data Health Viewer

x

x

System Status
Viewer

x

x

Data Fusion Viewer

x

x

Data Browser

x

x

Constraint
Management Viewer

x

x

User Displays

x

x

CMD Processor/
CMD Script

x

Data Components and
Fusion Description

OLDB

Reason
Code

CVT
Data

A Command and Control Workstation (CCWS) will contain User Applications, System Viewers, and
System Applications. Those applications on the CCWS will go through UDS for Data Handlers, Time
APIs, and Message APIs. Each system viewer will have their own special Data Handler that will contain
the routines of a base Data Handler, but would also contain any special data necessary for that viewer.
System Viewers, since written in Java, will go through a Java interface layer to support the transition to the
C++ APIs.

All the Data Handlers will provide access the services provided by FD Services, including Online Data
Bank (OLDB) access, CVT access, and Data Health and Fusion access. The Data Handlers will be able to
get data regarding Authentication, PCL, EIMs, Constraints, and System Integrity. User Displays will be
able to get time conversions displayed on a SL-GMS display with timers, and clocks provided by Timers

Applications Services 21 11/20/97 8:45 AM

System Services. Command Processor, and Command Scripts will also be able to display a System
Message from System Message Services through UDS.

3.3 User Display Services Design Specification

3.3.1 User Display Services Detailed Data Flow

Detailed Data Flow Diagrams

Data Health
Data Handler

Data Health

Data Fusion
Data Handler

Data Fusion

SL-GMS
Data Handler

JAVA
/C++

Bridge

Constraint
Management

Data
Distribution

Timer
Services

D
at

a
R

eq
ue

st

FD
 I

nf
or

m
at

io
n

D
at

a H
ea

lth

Rea
so

n
Cod

e

FDCollections

To
 V

ie
w

er
s

To V
iew

ers

To SL-GMS
Displays

CDT/MET

CVT

Health
Message

Data
Fusion

Constraint
Data

OLDB

O
L

D
B

In
fo

FD Value
FD HealthG

M
T

/J
T

O
Y

FD
s

Fusio
n

Componen
ts &

Desc
rip

tio
n

Fusion

Components &

Descriptions

FD
 H

ealth

R
eason C

ode
Constraint
Conditions

FD String
Formats

and
Time

Functions

Data Browser
Data Handler

Constraint
Management
Data Handler

To

V
iewers

To
Viewers

Constraint
Conditions

FD U
se

r

Clas
s

FD Services

Data Handler

FD/Time
Format

conversions

Applications Services 22 11/20/97 8:45 AM

+UDS_DataHandler()
+UDS_DataHandler1(FDLIST* fdlst)
+~UDS_DataHandler()
+UDS_UpdateFDTimeHealthValue(): int
+UDS_UpdateViewerInfo(): int

UDS_DataHandler

+~UDS_SLDataHandler()
+UDS_UpdateFDTimeHealthValue(): int
+UDS_UpdateViewerInfo(): int

UDS_SLDataHandler

UDS_SLFDData

+UDS_ToViewers1(FDLIST* fdlst)
+UDS_ToViewers()
+~UDS_ToViewers()

UDS_ToViewers

+UDS_UpdateFD()
+~UDS_UpdateFD()
+UDS_UpdateFDValue(FDLIST* fdlst): int

UDS_UpdateFD

-FDtotal: int
-XCoord: int
-YCoord: int
-FDname: char**

+SVW_ViewerMenu(FDLIST* head, int XCoord, int YCoord, int total)
+~SVW_ViewerMenu()

SVW_ViewerMenu

starts

+UDS_SLTimeString()
+~UDS_SLTimeString()
+UDS_AddTimeUserFctn(): void

UDS_SLTimeString

+UDS_TimeString()
+~UDS_TimeString()
+UDS_MillisecondsToGMT(long millisec, char* string): bool
+UDS_SecondsToCDT(long cdtsec, char* string): bool
+UDS_SecondsToJTOY(long jtoysec, char* string): bool

UDS_TimeString

UDS_
FDData

Gets Current

-Next: FDList

+~FDList()
+FDList()

FDList

+UDS_ValueConversions()
+~UDS_ValueConversions()
+UDS_AnalogToString(double analog,char* string): bool
+UDS_DiscreteToString(int discrete, char* string): bool
+UDS_DigitalToString(int digital, char* string): bool
+UDS_TimeToString(int time, char* string): bool

UDS_ValueConversions

Applications Services 23 11/20/97 8:45 AM

-FDData: FDList

+UDS_FDData()
+~UDS_FDData()

UDS_FDData

+UDS_DataHandler()
+UDS_DataHandler1(FDLIST* fdlst)
+~UDS_DataHandler()
+UDS_UpdateFDTimeHealthValue(): int
+UDS_UpdateViewerInfo(): int

UDS_DataHandler

+UDS_FusionDataHandler()
+~UDS_FusionDataHandler()

UDS_FusionDataHandler

+UDS_ConstraintDataHandler()
+~UDS_ConstraintDataHandler()

UDS_ConstraintDataHandler

+UDS_SystemIntegrityDataHandler()
+~UDS_SystemIntegrityDataHandler()

UDS_SystemIntegrityDataHandler

+UDS_HealthDataHandler()
+~UDS_HealthDataHandler()

UDS_HealthDataHandler

Status FD
Viewer

DataHealthViewerSystemIntegrityViewerConstraintMgmtViewerDataFusionViewerDMON
VIewer

+UDS_JavaToCBridge()
+~UDS_JavaToCBridge()

UDS_JavaToCBridge

Applications Services 24 11/20/97 8:45 AM

-Next: FDList

+~FDList()
+FDList()

FDList

-Description: char*
-Algorithm: char*

FDFusionList

-Condition: bool

FDConstraintList

-Description: char*

FDIntegrityList

-Description: char*

FDHealthList

+FunctionDesignator()
+~FunctionDesignator()

FunctionDesignator

Applications Services 25 11/20/97 8:45 AM

UDS Class Diagrams

3.3.2 User Display Services External Interfaces

3.3.2.1 User Display Services Message Formats
User Display Services outputs the following system messages:

Message Number = ASV_UDS_NOSYSVWR
Message Group = ASV
Severity = Error

System Viewers #ARGUMENT1# could not be found.

ARGUMENT1 = ASCII character string representing the filename and location of the System
Viewer executable.

Help Information Content
The environment variable $ASV_SVW_EXEC must be defined. This variable must point to the
location of the System Viewers executable.

Detailed Information
N/A

3.3.2.2 UDS Display Formats

Not applicable. UDS does not provide any displays.

3.3.2.3 UD Services Input Formats

Not applicable. There are no language-like interfaces provided by UDS.

3.3.2.4 Recorded Data

UDS does not record data nor initiate data recording.

3.3.2.5 UDS Printer Formats

UDS does not provide printed information.

3.3.2.6 Inter-process Communications

Not applicable.

Applications Services 26 11/20/97 8:45 AM

3.3.2.7 UDS External Interface Calls

The CLCS UDS Interface Description Document #84K00361 describes the data sent between the UDS CSC
and CLCS applications via a calling mechanism. The CLCS FD Services Interface Description Document
#84K00362 describes the data sent between UDS and FD Services.

3.3.2.8 UDS Table Formats

UDS does not utilize any tables internally that are provided from an outside source.

3.3.3 UDS Test Plan

3.3.3.1 UDS Data Handler for SL-GMS User Displays
Test Objective:
Test and / or Regression test the following User Display Services (UDS) capabilities to output FD and
OLDB data to SL-GMS-based displays:
1. Display FD (CVT) values on an SL-GMS display at a CCW/S: (5.2.2.1)

1.1. Analog (one or more of each analog data type - TBD data types)
1.2. Discrete (one or more of each discrete data type - 8 data types)
1.3. Digital Pattern (one or more of each of the following data types: Hex, Octal, BCD,

Enumerated Type)
1.4. Time values in the following formats (JTOY, CDT/MET, others?)

2. Allow user application displays access (to) FD related information from the CVT/OLDB. (5.2.2.2)
3. Update the necessary SL-GMS representation of FD’s with the current data (5.2.2.5).
4. Stop updating the SL-GMS display of an FD with the current data (5.2.2.6).
5. Verify each API call returns correct status (success only).
Test Approach Summary:
The test conductor will bring up an SL-GMS test display containing one (or more) FD of each data type
with the value, time, health, and OLDB parameters. In another window, CVT_Look or another test tool
will be used to examine the current value for each FD on the test display. The values will be compared.
Next, the Sim Gateway will be started, and FD value changes will be verified by stopping the Sim G/W and
comparing the CVT values to the values on the test display. The Sim G/W will be restarted, and the Data
Handler will be set to stop updating values. The CVT will be examined to show values are being changed
in the CVT, but not on the test display. The Data Handler will be set to start updating the display again, and
the display will be compared to the CVT to show the values are being updated correctly.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor TCID
• Data Distribution / CVT on DDP, CCP, and CCWS
• SL-GMS-based test display
• TBD CVT Viewing tool for CCWS to examine CVT values (CVT_LOOK from DD or other tool)
Requirement(s):
• SLS Requirement(s): 5.2.5.8.3
• ASV/UDS Requirement(s): 5.2.2.1, 5.2.2.2, 5.2.2.5, 5.2.2.6
• RTC Applications (User) Requirement(s): N/A

3.3.3.2 UDS Data Handler for Data Fusion
Test Objective:

Applications Services 27 11/20/97 8:45 AM

Test and / or Regression test the following UDS capabilities to output Fusion FD value and parameter data
to SL-GMS displays:
1. Provide a list of Fused FDs at a CCW/S: (5.2.2.7.2.1)

1.1. Analog (one or more of each analog data type - TBD data types)
1.2. Discrete (one or more of each discrete data type - 8 data types)
1.3. Digital Pattern (one or more of each of the following data types: Hex, Octal, BCD,

Enumerated Type)
2. Provide a list of FD components with the Fused FD. (5.2.2.7.2.2)
3. Provide a list of fused FDs and their FD components up to the level supported by Data Fusion.

(5.2.2.7.2.3)
4. Display the algorithm/description in string format for a fused FD. (5.2.2.7.2.4)
5. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
1. The test conductor will use the Fusion FD Viewer or a test display to view the output of one or more
Fusion FDs. The Fusion Algorithm Viewer will be used to view the equation. The FD Viewer or Browser
will be used to view the input values. Using static or dynamic data, the Fusion FD will be executed, and the
output will be compared to the expected result, using the values of the input FD(s) and the equation.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• Data Fusion
• Data Fusion Viewer (to view and control Fusion execution)
• Data Fusion Algorithm Viewer
• Command Management or equivalent mechanism to send Writes to Gateways
Requirement(s):
• SLS Requirement(s): ?
• FD Services Requirement(s): 5.2.2.7.2.1, 5.2.2.7.2.2, 5.2.2.7.2.3, 5.2.2.7.2.4
• RTC Applications (User) Requirement(s): 4.2.4.2.1, 4.2.4.2.2, 4.2.4.2.3

3.3.3.3 UDS Data Handler for Constraint Management
Test Objective:
Test and / or Regression test the following UDS capabilities to provide constraint data:
1. Get the FD constraint transition for a particular user class. (5.2.2.7.3.1)
2. Notify Viewers when a constraint transition has been met. (5.2.2.7.3.2)
3. Get FD constraint transitions in the local Constraint Cache and table to Viewers. (5.2.2.7.3.3)
4. Give a viewer the FD’s constraint expression. (5.2.2.7.3.4)
5. Give a viewer the FD’s constraint transitions. (5.2.2.7.3.5)
6. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
The test conductor at a CCWS will use a Constraint Management-provided viewer to set constraints for
specified FDs of each FD type. A viewer will be used to verify the constraint data was received correctly,
that the constraint was violated (transition from in limits to out of limits) and that the constraint returned to
normal (transition from out of limits to in limits). A constraint expression/algorithm viewer will be used to
view a constraint expression.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor test TCID, with Fusion FDs and pseudo FDs defined

Applications Services 28 11/20/97 8:45 AM

• Thor test Constraint Algorithm table, provided by DB Safe personnel.
• Data Distribution / CVT on DDP, CCP, and CCWS
• Constraint Management or equivalent mechanism to set Constraints for FDs and provide constraint

transition status
• Command Processor or equivalent to input FD writes at CCWS
• TBD Constraint Viewing tool for CCWS to examine Constraint values
Requirement(s):
• SLS Requirement(s): 2.2.5.4.1
• ASV / UDS Requirement(s): 5.2.2.7.2.1, 5.2.2.7.2.2, 5.2.2.7.2.3, 5.2.2.7.2.4.
• RTC Applications (User) Requirement(s): N/A.

3.3.3.4 UDS Data Handler for Data Health
Test Objective:
Test and / or Regression test the following UDS Data Health capabilities:
1. Give the string associated with a health reason code (5.2.2.7.4.1)
2. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
The test conductor will bring up the Data Health viewer or a test display and a TBD viewer or test display
to set health status. For one or more FDs, the health reason code will be set and compared to the expected
value.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• Command Management or equivalent mechanism to send Writes to Gateways
• Command Processor or equivalent to write FD Health status at CCWS
• Data Health
• TBD Viewing tool for CCWS to examine Data Health values
Requirement(s):
• SLS Requirement(s):
• FD Services Requirement(s): 5.2.2.7.4.1
• RTC Applications (User) Requirement(s): 4.2.4.4.1, 4.2.4.4.2.1-7???

3.3.3.5 UDS Data Handler for System / Subsystem Status
Test Objective:
Test the following UDS capabilities for System / Subsystem Integrity:
1. Get a list of FDs associated with System/Subsystem Integrity. (5.2.2.7.5.1)
2. Retrieve data from the System Configuration Table (SCT). (5.2.2.7.5.2)
3. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
At a CCWS, the test conductor will use the System/Subsystem Viewer or an equivalent test display to
retrieve a pre-defined list of FDs associated with System/Subsystem Integrity. This will be compared to a
printout of the pre-defined list. Next, the test conductor will read the SCT, and display the data on a TBD
Viewer or test display. This will be compared to a printout of the pre-defined table data.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor TCID, with System/Sub-system Integrity FDs defined

Applications Services 29 11/20/97 8:45 AM

• Data Distribution / CVT on DDP, CCP, and CCWS
• System / Subsystem Integrity or equivalent test tool
• TBD Viewing tool or test displays to examine System / Subsystem Integrity FD data and SCT

data
Requirement(s):
• SLS Requirement(s):
• FD Services Requirement(s): 5.2.2.7.5.1, 5.2.2.7.5.2
• RTC Applications (User) Requirement(s):

3.3.3.6 UDS Data Handler for FD Browser
Test Objective:
Test the following FD Svcs capabilities to write FD value and parameter data:
1. Get a list of FDs in a user class. (5.2.2.7.6.1)

1.1. Analog (one or more of each analog data type - TBD data types)
1.2. Discrete (one or more of each discrete data type - 8 data types)
1.3. Digital Pattern (one or more of each of the following data types: Hex, Octal, BCD,

Enumerated Type)
1.4. Time values in the following formats (JTOY, CDT/MET, others?)

2. Verify each API call returns correct status (success only).
Test Approach Summary:
The test conductor will create a list of FDs with a defined user class, save it, and retrieve (use) it from the
FD Browser. The FDs displayed on the Browser will be compared to the list that was created.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN and DCN
• Reliable Messaging / Network Services
• Thor TCID, with User Classes defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• FD Browser
• Command Management or equivalent to write FD list at CCWS
Requirement(s):
• SLS Requirement(s):
• FD Services Requirement(s): 5.2.2.7.6.1
• RTC Applications (User) Requirement(s):

3.3.3.7 UDS String Formatting Functions
Test Objective:
Test the following UDS capabilities for formatting data into strings:
1. Get an analog FD value back as a formatted string (5.2.2.8.1)
2. Get a digital pattern FD value back as a string for the following data types: (5.2.2.8.2)

2.1. hex
2.2. binary
2.3. octal
2.4. BCD

3. Get a discrete FD value back as a string. (5.2.2.8.3)
3.1. On / Off
3.2. True / False
3.3. Wet / Dry
3.4. Open / Closed

4. Get an enumerated FD value back as a string. (5.2.2.8.4)
5. Get Time FD values back as a string: (5.2.2.8.5)

5.1. JTOY
5.2. GMT

Applications Services 30 11/20/97 8:45 AM

5.3. CDT/MET
5.4. day of year
5.5. month of year, displayed as a number
5.6. month of year as a string
5.7. day of month
5.8. Year
5.9. day of week displayed as a complete string
5.10. day of week displayed as an abbreviated string
5.11. time as hours
5.12. time as hours and minutes
5.13. time as minutes and seconds
5.14. time as minutes, seconds, and milliseconds
5.15. time as seconds and milliseconds

6. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
At a CCWS, the test conductor will use a viewer or test display with the time formats built in string formats
and a viewer or test display showing the times in raw format. A comparison will be made by using a
calculator to convert the raw times into processed, string formats. The time values in the CVT can be
dynamic (using Gateway or Sim Gateway data) or static (using pre-defined values, manually placed into the
CVT using CVT_stuffer or some other tool).
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN (100BaseT) and DCN (FDDI)
• Reliable Messaging (or equivalent) / Network Services
• Thor TCID, with Time FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS OR CVT_stuffer tool
• System Services’ Timer Services
• TBD Viewing tool for CCWS to examine time values as strings OR test display
• TBD Viewing tool for CCWS to examine raw time values OR test display
Requirement(s):
• SLS Requirement(s):
• FD Services Requirement(s): 5.2.2.8.1, 5.2.2.8.2, 5.2.2.8.3, 5.2.2.8.4, 5.2.2.8.5
• RTC Applications (User) Requirement(s):

3.3.3.8 UDS Java Interface to System Viewers
Test Objective:
1. Test the following UDS capability to call C++ code from a Java Viewer, such that C++ application

and system services can be called from a System Viewer (written in Java). (5.2.2.9)
2. Verify each API call returns correct status (success only). (1.2.2.1)
Test Approach Summary:
The test conductor will bring up each Java-based viewer and demonstrate the browser receives data
correctly.
Required Test Configuration / Dependencies:
• Ops CM to Configure Flow Zone
• DDP, CCP, and CCWS platforms
• RTCN and DCN
• Reliable Messaging / Network Services
• Thor TCID, with Fusion FDs and pseudo FDs defined
• Data Distribution / CVT on DDP, CCP, and CCWS
• TBD CVT Viewing tool for CCWS to examine CVT values (CVT_LOOK from DD or other tool)
Requirement(s):
• SLS Requirement(s):
• FD Services Requirement(s):): 5.2.2.9

Applications Services 31 11/20/97 8:45 AM

• RTC Applications (User) Requirement(s):

Gateway

Logical HCI

User
Displays

System
Viewers

FD
Services

User
Display

Services

System
Message
Services

CMD
Support

CVT
OLDB
TCID

Logical DDP

Data
Distribution

System
Message

Writer
Monitor

CMD

DDVT

Work Station

Keyboard Mouse

UDS Minimum Test Configuration

Applications Services 32 11/20/97 8:45 AM

4. Sub-system Services (SSS) CSC

4.1 Sub-system Services Introduction

4.1.1 Sub-system Services Overview

Sub-system Services (SSS) is a CSC in Application Services (ASV). SSS consist of three parts, Gateway
Interface Services (GIS), On-board Services (OBS), and Non-gateway Services (NGS). GIS will be the
interface for user applications to command Function Designators (FDs) and non-FDs to/from Ground
Support Equipment (GSE) and Pulse Code Modulation (PCM) Down-link gateways. OBS will interface the
commands for user applications for FDs and non-FDs from the Launch Data Bus (LDB) and PCM up-link
gateways. Non-gateway Services will interface with commands that have a destination not associated with a
gateway. This includes setting time FDs, health of an FD, and pseudo FDs.

Sub-system Services Conceptual Diagram

Multiplexer/
Demultiplexer

(MDM)

Ground Support
Equipment

(GSE)
Gateways

Display
Electronics

Unit
(DEU)

Display
Driver
Unit

(DDU)

Mass
Memory

Unit
(MMU)

Master
Events

Controller
(MEC)

Engine
Interface

Unit
(EIU)

Pulse Code
Modulation
Master Unit
(PCMMU)

PCM
Downlink
Gateway

Command
Management

Sub-system
Services

User /System
Applications

PCM Uplink
Gateway

LDB
Gateway

OLSA

Signal Condition

ORBITER

RTPS

FD
Services

Consolidated
Gateways

GSE HIMs

Other
Equipment

General Purpose Computers (GPC)

Application Services

4.1.2 Sub-system Services Operational Description

Sub-system Services (SSS) will be called from user and system applications. SSS will provide type
checking C++ Application Programmers Interfaces (APIs) so that commands from an application are
checked at compile and link time instead of run time. SSS commands will consist of two parts. FD related
commands, and non-FD related commands. An FD Services object inherits FD commands from a sub-
system class specific to the commands destination. This will provide data hiding and allow the object to
only call a command that the FD is capable. Non-FD commands will be able to be accessed through SSS
directly, but will not include any commands associated with a FD. The sub-system command will have in
the object the necessary information about the particular sub-system. This will provide the syntax checking
necessary to ensure the correct command. SSS will then put all the necessary parts of the command

Applications Services 33 11/20/97 8:45 AM

together to be sent out to Command Management. Command responses will then be returned to SSS to
provide the information back to the FD, or to the application.

4.2 Sub-system Services Specifications

4.2.1 Sub-system Services Groundrules

• Command Management will provide all gateway communications and packet definition for Sub-system
Services.

• User applications must use SSS to send commands, or use FD Services which will access SSS For FD
Commands.

• Sub-system Services will only read or command Onboard FDs for MDM in Thor.

4.2.2 Sub-system Services Functional Requirements

4.2.2.1 On-board Services (OBS) Functional Requirements

1. OBS shall provide a method for building a raw data word for discrete, analog, and digital pattern
measurement and stimulus data (KSC-LPS-OP-033-4 section 2.1 (TRANSLATE TO RAW DATA
AND MERGE WITH)).4

2. OBS shall provide a method for converting a raw data word from onboard memory into
measurement data (KSC-LPS-OP-033-4 section 2.2 (CONVERT RAW DATA)).

3. OBS shall provide functionality for an user application to issue quantity type data to the system
under test (KSC-LPS-OP-033-4 section 3.1 (APPLY ANALOG)).

3.1. Multiplexer/Demultiplexer (MDM).

3.2. FLEX MDM.

3.3. Engine Interface Unit (EIU).

3.4. Sequence Control Assembly (SCA).

3.5. Master Events Controller for critical and critical/non-critical operations.

3.6. MDM or FLEX MDM PROM sequence.

3.7. For a single analog command applied to a single analog FD.

3.8. For a single analog command applied to many analog FDs. 5

3.9. For many analog commands applied to many analog FDs.

4. OBS shall provide functionality for an user application the ability to command an Engine
Interface Unit (EIU) to perform the internal functions (KSC-LPS-OP-033-4 section 3.2.1):

4.1. Status Override (COMMAND EIU STATUS OVERRIDE).

4.2. Master Reset (COMMAND EIU MASTER RESET).

4.3. Wrap Test (COMMAND EIU STATUS OVERRIDE).
5. OBS shall provide functionality to send a request to the Launch Sequence Functional Destination

for controlling the terminal count to support (COMMAND LAUNCH SEQUENCE (KSC-LPS-OP-
033-4 section 3.2.2)):
5.1. RS Auto Sequence Start (RS AUTO SEQUENCE START).
5.2. Hold (HOLD).
5.3. Recycle (RECYCLE).
5.4. Bypass of LO2 Overboard Bleed Valve CL A (BYPASS OF LO2 OVBD BLEED VLV CL

A).

4 Converting raw data to engineering units will be done at the gateway.
5 The functionality to give bundled commands will probably be implemented in higher level software such
as Control-Shell, or a data handler.

Applications Services 34 11/20/97 8:45 AM

5.5. Bypass of LO2 Overboard Bleed Valve CL B (BYPASS OF LO2 OVBD BLEED VLV CL
B).

5.6. Bypass of LO2 Accumulator Re-circulation Valve OP (BYPASS OF LO2 ACCUM
RECIRC VLV OP).

5.7. Resume Count (RESUME COUNT).
5.8. SRB FCS Hydraulic Verification Flag (SRB FCS HYDR VERIFICATION FLAG).
5.9. Orbiter Vent Doors Override (ORBITER VENT DOORS OVERRIDE).
5.10. Estimated Mass of Orbiter with External Tank (EST MASS OF ORBITER WITH ET).
5.11. Aerosurface Drive Check (AEROSURFACE DRIVE CHECK).
5.12. MPS/ET Low Level Sensor Disable Flag (MPS/ET LOW LVL SNCR DSBL WRD).
5.13. LPS Go For Engine Start (LPS GO FOR ENGINE START).
5.14. ET LH2 Low Level Sensor Disable Flag (ET LH2 LOW LVL SNCR DSBL FLAG).
5.15. SRM Chamber Pressure Calibration Word (SRM CHAMBER PRESS CAL WRD).
5.16. JTOY of Lift Off To (JTOY OF LIFT OFF TO).

6. OBS shall provide functionality to request an MDM or FLEX MDM to perform the internal
functions (KSC-LPS-OP033-4 section 3.2.3):
6.1. Master Reset (COMMAND MDM MASTER RESET).
6.2. Perform BITE Tests 1, 2, 3, and 4 (COMMAND MDM BITE).
6.3. Load the BITE Status Register (COMMAND MDM BITE STATUS REGISTER).
6.4. Perform a Wrap Test (COMMAND MDM WRAP TEST).

7. OBS shall provide the functionality to communicate with the Master Event Controller BTUs and to
command their test and control functions for (KSC-LPS-OP-033-4 section 3.2.4):
7.1. SIM PIC CAP Volt Enable (COMMAND MEC SIM PIC CAP VOLT).
7.2. Master Reset (COMMAND MEC MASTER RESET).
7.3. Wrap Test (COMMAND MEC WRAP TEST).

8. OBS shall provide functionality to request the Sequence Control Assembly (SCA) to perform
internal test functions to (KSC-LPS-OP-033-4 section 3.2.5):
8.1. Wrap Test (COMMAND SCA WRAP TEST).
8.2. BITE Status Register (COMMAND SCA BITE STATUS REGISTER).

9. OBS shall provide functionality to request the up-link gateway to perform the specified functions
(KSC-LPS-OP-033-4 section 3.2.6):
9.1. to execute an up-link request which has been loaded in the two-stage buffer by a previous

statement (COMMAND UPLINK TWO STAGE BUFFER EXECUTE).
9.2. to clear a request in the two-stage buffer previously loaded by a procedure (COMMAND

UPLINK TWO STAGE BUFFER CLEAR).
9.3. to request the up-link gateway to accept a 48 bit pre-formatted command data word and

cause it to be issued to the onboard system (COMMAND UPLINK TO ISSUE).
10. OBS shall provide functionality to provide an issue statement to support commands to the on-

board components (KSC-LPS-OP-033-4 section 3.2.7 (ISSUE)):
10.1. Multiplexer/Demultiplexer (MDM)
10.2. FLEX MDM.
10.3. MDM Serial IO Device.
10.4. Engine Interface Unit (EIU)
10.5. Sequence Control Assembly (SCA)
10.6. Maser Events Controller for critical and critical/non-critical operations.
10.7. MDM or FLEX MDM PROM sequence.

11. OBS shall provide functionality to provide “read” operations on the on-board components (KSC-
LPS-OP-033-4 section 3.3):
11.1. Engine Interface Unit (READ EIU)
11.2. Multiplexer/Demultiplexer (READ MDM)
11.3. Master Events Controler (READ MEC)
11.4. Pulse Code Modulation Master Unit (READ PCMMU).
11.5. Sequence Control Assembly (READ SCA).
11.6. Support a single FD to be read and stored in a single variable.

Applications Services 35 11/20/97 8:45 AM

11.7. Support a single FD to be read and stored in multiple variables. 6

11.8. Support multiple FDs to be read and stored in multiple variables.
12. OBS shall provide the capability to set discrete statements for MDMs, MEC, and FLEX MDMs for

(KSC-LPS-OP-033-4 section 3.4 (SET)):
12.1. Support time intervals to issue a discrete command and issue the complement when the

time value specified has expired.
12.2. Support time interval to reissue the same state after the time interval has been exhausted

(NO COMPLEMENT).
12.3. Support commands to receive high priority processing by the LDB gateway and routing

to the SACS functional destination with responses inhibited (CRITICAL).
12.4. Support the up-link gateway to command data to be issued via the 2-stage buffer (MDM

MULTIPLE).
12.5. Support up-link gateway to cause a command data to be issued via the stored program

command buffer and specify the JTOY at which the data is to be issued (AT TIME
VALUE).

12.6. Support to request the PCM up-link gateway to format a MDM single command for
repeated issuance at the current system rate, and inhibit all other command processing
until a STOP command is issued (REPEATED).

12.7. A single discrete command applied to a single FD.
12.8. A single discrete command applied to many FDs.
12.9. Many discrete commands applied to many FDs .

13. OBS shall provide the functionality to cancel or terminate the execution of an on-board explicitly
coded program (ECP) or TCS sequence (KSC-LPS-OP-033-4 section 4.1).
13.1. Cancel the execution of an ECP (CANCEL ECP PROGRAM).
13.2. Cancel the execution of a TCS sequence (CANCEL TCS PROGRAM).

14. OBS shall provide the functionality to initiate the parallel execution of a TCS sequence or ECP in
the GPC which is currently communicating with the ground via the LDB and support (KSC-LPS-
OP-033-4 section 4.2 (CONCURRENT)):
14.1. TCS sequence selected from mass memory and will continue as soon as the executor

receives notification from the LDB gateway that the last data block of the sequence has
been transferred to the GPC (TCS SEQUENCE FROM MASS MEMORY).

15. OBS shall provide the functionality to initiate the execution of TCS Sequence (KSC-LPS-OP-033-
4 section 4.3 (PERFORM TCS PROGRAM)).

16. OBS shall provide the functionality to restart execution of a previously stopped TCS sequence with
an option to specify which TCS step number is to be used to re-start execution (KSC-LPS-OP-033-
4 section 4.4 (RESUME TCS PROGRAM)).

17. OBS shall provide the capability to temporarily halt the execution of a TCS sequence, to stop the
execution of a repeated MDM single command in the PCM up-link gateway or to stop the
execution of a repeated payload throughput command in the PCM up-link gateway (KSC-LPS-
OP-033-4.section 4.5 (STOP TCS PROGRAM)).

18. OBS shall provide the functionality to issue statements to SRB MDM’s to (KSC-LPS-OP-033-4
section 6.0):
18.1. lock the MDM module specified in the data bank for the given FD (LOCK SRB MDM).
18.2. unlock the MDM module specified in the data bank for the given FD (UNLOCK SRB

MDM).
19. OBS shall provide the functionality to request the LDB gateway to enable the currently inactive

LDB to provide the capability to switch LDBs when GPCs are polling simultaneously on both
LDBs (KSC-LPSOP-033-4 section 7.0 (SWITCH LDB)).

20. OBS shall provide the functionality to provide the capability to control the LDB I/O functions
performed by the GPC. This capability shall cause the desired request to be sent to the GPC which
is currently communicating with the LDB gateway so that the current mode and/or control paths
are changed by the GPC (KSC-LPS-OP-033-4 section 8.1 (LDB CONTROL)).

6 The functionality to support multiple FD handling may be implemented in a higher level such as Control-
Shell or a data handler.

Applications Services 36 11/20/97 8:45 AM

21. OBS shall provide the functionality to obtain the contents of on-board memory and store the data
for (KSC-LPS-OP-033-4 section 8.2):
21.1. GPC memory (READ GMEM) (contiguous reads only for Thor).
21.2. DEU memory (READ DEU MEM).
21.3. SSME memory (READ SSME MEM).

22. OBS shall provide the functionality to modify locations in the on-board memory for (KSC-LPS-
OP-033-4 section 8.3):
22.1. GPC memory (WRITE GMEM) (contiguous writes only for Thor).
22.2. SSME memory (WRITE SSME MEM).

23. OBS shall provide the functionality to modify the value of data contained in the TCS 1-1 registers
in the GPC numbered 49 through 96 without being required to specify the register’s address
(KSC-LPS-OP-033-4 section 9 (LOAD REGISTER)).

24. OBS shall provide the functionality to send values in the TCS 1-1 registers in the GPC numbered
49 through 96 to the ground without being required to specify the register’s address (KSC-LPS-
OP-033-4 section 10 (DUMP REGISTER)).

25. OBS shall provide the functionality to emulate the DEU keystrokes and display data to the onboard
CRT
25.1. Provide functionality to specify the value of a DEU type command in any of the

permissible formats to the on-board system under test (KSC-LPS-OP-033-4 section 11.1
(ISSUE DEU)).
25.1.1. Operational Sequence (OPS).
25.1.2. Specialist Function/Display Function (SPEC).
25.1.3. Item (ITEM).
25.1.4. Resume (RESUME).
25.1.5. Proceed (PRO).
25.1.6. Execute (EXEC).
25.1.7. Message Reset (MSG RESET).
25.1.8. Acknowledge (ACK).
25.1.9. Fault Summary (FAULT SUMM)
25.1.10. Computer/CRT (GPC/CRT).
25.1.11. System Summary (SYS SUMM).
25.1.12. I/O Reset (I/O RESET).
25.1.13. Destination (DEST).

25.2. Provide functionality to display data from a ground API to the on-board DEU CRT (KSC-
LPS-OP-03304 section 11.3 (RECORD DATA)).

26. OBS shall provide the functionality to issue commands to the KU-Band Communications Radar or
to payload systems that have Payload Signal Processors/Payload Interrogator (PSP/PI) or other
special IO device interfaces and to issue commands to the Space-Lab subsystem or experimental
computer (KSC-LPS-OP-033-4 section 14.1 (COMMAND PAYLOAD)).

27. OBS shall provide the functionality to command the Payload Data Interleaver (PDI) to perform
the PDI Wrap Test (KSC-LPS-OP-033-4 section 14.2 (COMMAND PDI)).

28. OBS shall provide the functionality to read data from the PDI (KSC-LPS-OP-033-4 section 14.3
(READ PDI)).

29. OBS shall provide the functionality to issue CIE data and/or commands to the PCM uplink
gateway for 128 KBS forward link command issuance (KSC-LPS-OP-033-4 section 14.4
(COMMAND CIE)).

30. OBS shall provide the functionality to (KSC-LPS-OP-033-4 section ()):
30.1. Activate/Inhibit Responses.
30.2. Activate/Inhibit MEC read BITE.
30.3. Activate/Inhibit read BITE.

4.2.2.2 Gateway Interface Services (GIS) Functional Requirements
1. FD Commanding.

1.1. GIS shall provide support for an CLCS application to issue quantity type data to a GSE
gateway (APPLY ANALOG).

Applications Services 37 11/20/97 8:45 AM

1.1.1. For a single analog command applied to a single analog FD.
1.1.2. For a single analog command applied to many analog FDs.
1.1.3. For many analog commands applied to many analog FDs.

1.2. GIS shall provide support for an CLCS application to set discrete statements to a GSE
gateway (SET DISCRETE).
1.2.1. For a single discrete command applied to a single discrete FD.
1.2.2. For a single discrete command applied to many discrete FDs.
1.2.3. For many discrete commands applied to many discrete FDs.
1.2.4. To specify a time value to set the command to the indicated state for the

specified period and then return it to the original state.
1.3. GIS shall provide support for an CLCS application to issue a value to digital pattern

output FDs to a GSE gateway (ISSUE DIGITAL PATTERNS).
1.3.1. For a single digital pattern command applied to a single digital pattern FD.
1.3.2. For a single digital pattern command applied to many digital pattern FDs.
1.3.3. For many digital pattern commands applied to many digital pattern FDs.

1.4. GIS shall provide support for modification of calibration coefficients of PCM and GSE
FDs.

1.5. GIS shall provide support for reading calibration coefficients of PCM and GSE FDs.
1.6. GIS shall provide support for an CLCS application to change the sample rate of any GSE

FD.
1.7. GIS shall provide a method to activate and inhibit change processing on a per FD basis

for a GSE and PCM gateway.
1.8. GIS shall provide a method to activate and inhibit command issuance on a per FD basis

by any GSE gateway.
1.9. GIS shall provide a method of reading the current sample rate of an FD.
1.10. GIS shall provide the capability to read the current hardware address of an FD.
1.11. GIS shall provide change hardware address of an FD at any GSE gateway.
1.12. GIS shall provide a method to read the FD directly from the GSE HIM’s output.

2. Non-FD Commanding.
2.1. GIS shall provide support for enable and disable PCM and GSE gateway processing.
2.2. GIS shall provide support for changing Sync Bits in Error Count on a PCM gateway.
2.3. GIS shall provide a method to activate and inhibit change processing on a PCM and GSE

gateways.
2.4. GIS shall provide a method to activate and inhibit frame logging on a PCM gateway.
2.5. GIS shall provide a method to activate and inhibit data acquisition at any GSE and PCM

gateway.
2.6. GIS shall provide a method to activate and inhibit data processing at any GSE and PCM

gateway.
2.7. GIS shall provide a method to activate and inhibit command issuance on a GSE gateway.
2.8. GIS shall provide a method to activate and inhibit HIM testing Command.
2.9. GIS shall provide a method to activate and inhibit HIM polling command.
2.10. GIS shall provide support for changing or selecting the active PCM and GSE gateways.
2.11. GIS shall provide a method to read the data acquisition status of any GSE gateway.

4.2.2.3 Non-Gateway Services (NGS) Functional Requirements
1. NGS shall provide a method to publish values to pseudo FDs.
2. NGS shall provide a method to publish health values for FDs using Command Management

support.
3. NGS shall provide a method to publish time values for CDT and MET FDs using Command

Management support for:
3.1. Set CDT/MET to a value.
3.2. Start CDT/MET.
3.3. Start CDT/MET at a specified GMT/CDT time.
3.4. Hold CDT/MET.
3.5. Hold CDT/MET at a specified GMT/CDT time.

Applications Services 38 11/20/97 8:45 AM

3.6. Cancel pending CDT/MET command.

4.2.3 Sub-system Services Performance Requirements

There are no performance requirements for Sub-system Services.

4.2.4 Sub-system Services CSC Interfaces Data Flow Diagrams

External Data Flow Diagram Example

Command
Support

Consolidated
Gateway

Data
Distribution

PCM
Downlink

PCM
Uplink

LDB
Gateway

System/User Applications

Command Processor System Viewers User Applications

Application
Services

Command
Interface

Command
Mgmt Authenti

cation

Data
Distribution
Processing

Data
Health

Timer
Services

FD Services

Sub-system Services

FD Commands NON-FD CommandsChange Data

Change Data

Change Data

Commands

PCM
Commands

LDB
Commands

Command
Requests

Publish
Time FDs

Set
FD Health

Command
Response

Set
Pseudo FDs

PCL
GIS GPDS OBS

Responses

GSE
Gateway

Sub-system services consist of objects tied into FD Services for a seamless integration of FD commands.
When an application wants to perform an FD command, they will call an API through the FD object. The
FD object will then have SSS package the command and send it out to Command Interface portion of
Command Management. Command Interface will build the necessary packet to be sent out to the logical
destination. Command Management will call the necessary Prerequisite Control Logic (PCL) and
authenticate the command. The response code will be sent back to SSS to provide it for the FD object. If
the command is associated with an FD object not assigned to a gateway, then Command Management will
send it to the appropriate service to process the FD information as a command. If the command is not FD
related, then the user will be able to create an object for the particular sub-system to call a command that is
only associated with the appropriate destination. SSS will then package the command and send it to
Command Interface to put the information into a packet to be sent through Command Management to the
logical destination. Responses will then be sent back to SSS, and the service will provide any necessary
conversions of the data to provide for the users similar capabilities found in the Ground Operations
Aerospace Language (GOAL).

Applications Services 39 11/20/97 8:45 AM

4.3 Sub-system Services Design Specification

4.3.1 Sub-system Services Detailed Data Flow

TBS.

Detailed Data Flow Diagram

Applications Services 40 11/20/97 8:45 AM

+CmdContainerInterface()
+~CmdContainerInterface()

CmdContainerInterface

+FDDestinations()
+~FDDestinations()
+SetFDHealth()
+SetFDConstraints()

FDCmdContainer

+CmdContainer()
+~CmdContainer()

CmdContainer

+FDGSEPCMDLCmdContainer()
+~FDGSEPCMDLCmdContainer()
+ReadCoefficients(): int
+ChangeCoefficients(): int
+ActivateChangeProcessing()
+InhibitChangeProcessing()

FDGSEPCMDLCmdContainer

+FDOnBoardCmdContainer()
+~FDOnBoardCmdContainer()

FDOnBoardCmdContainer

+GSEPCMDLCmdContainer()
+~GSEPCMDLCmdContainer()
+ActivateDataAcquisition()
+InhibitDataAcquisition()
+ActivateDataProcessing()
+InhibitDataProcessing()

GSEPCMDLCmdContainer

+OnBoardCmdContainer()
+~OnBoardCmdContainer()

OnBoardCmdContainer

Applications Services 41 11/20/97 8:45 AM

+FunctionDesignator()
+~FunctionDesignator()

FunctionDesignator

+GSEAnalogStimulus()
+~GSEAnalogStimulus()

GSEAnalogStimulus

+GSEDigitalStimulus()
+~GSEDigitalStimulus()

GSEDigitalStimulus

+GSEDiscreteStimulus()
+~GSEDiscreteStimulus()

GSEDiscreteStimulus

+SetDiscrete()
+ApplyAnalog()
+IssueDigitalPatterns()
+ChangeFDAddress()
+ChangeFDHimOutput()

FDGSECmdContainer

+FDPCMDnlnkCmdContainer()
+~FDPCMCmdContainer()

FDPCMDnlnkCmdContainer

+FDGSEPCMDLCmdContainer()
+~FDGSEPCMDLCmdContainer()
+ReadCoefficients(): int
+ChangeCoefficients(): int
+ActivateChangeProcessing()
+InhibitChangeProcessing()

FDGSEPCMDLCmdContainer

Applications Services 42 11/20/97 8:45 AM

+FDPCMDnlnkCmdContainer()
+~FDPCMCmdContainer()

FDPCMDnlnkCmdContainer

+PCMDigitalStimulus()
+~PCMDigitalStimulus()

PCMDigitalStimuls

+PCMDiscreteStimulus()
+~PCMDiscreteStimulus()

PCMDiscreteStimulus

+PCMAnalogStimulus()
+~PCMAnalogStimulus()

PCMAnalogStimulus

+FunctionDesignator()
+~FunctionDesignator()

FunctionDesignator

+SetDiscrete()
+ApplyAnalog()
+IssueDigitalPatterns()
+ChangeFDAddress()
+ChangeFDHimOutput()

FDGSECmdContainer

+FDGSEPCMDLCmdContainer()
+~FDGSEPCMDLCmdContainer()
+ReadCoefficients(): int
+ChangeCoefficients(): int
+ActivateChangeProcessing()
+InhibitChangeProcessing()

FDGSEPCMDLCmdContainer

Applications Services 43 11/20/97 8:45 AM

+FDLDBCmdContainer()
+~FDLDBCmdContainer()

FDLDBCmdContainer

+~FDLDBEIUCmdContainer()

FDLDBEIUCmdContainer

+FDLDBMECCmdContainer()
+~FDLDBMECCmdContainer()

FDLDBMECCmdContainer

+FDLDBMMUCmdContainer()
+~FDLDBMMUCmdContainer()

FDLDBMMUCmdContainer

+FDLDBMDMCmdContainer()
+~FDLDBMDMCmdContainer()

FDLDBMDMCmdContainer

+FDLDBDEUCmdContainer()
+~FDLDBDEUCmdContainer()

FDLDBDEUCmdContainer

+FDPCMULCmdContainer()
+~FDPCMULCmdContainer()

FDPCMULCmdContainer

+FDOnBoardCmdContainer()
+~FDOnBoardCmdContainer()

FDOnBoardCmdContainer

SSS Class Diagrams

Applications Services 44 11/20/97 8:45 AM

4.3.2 Sub-system Services External Interfaces

4.3.2.1 Sub-system Services Message Formats
TBD.

4.3.2.2 Sub-system Services Display Formats
Not applicable. SSS does not provide any displays.

4.3.2.3 Sub-system Services Input Formats
No applicable. There are no language-like interfaces provided by SSS.

4.3.2.4 Recorded Data
SSS does not record data nor initiate data recording.

4.3.2.5 Sub-system Services Printer Formats
SSS does not provide printed information.

4.3.2.6 Interprocess Communications (C-to-C Communications?)
Not applicable.

4.3.2.7 Sub-system Services External Interface Calls
The CLCS SSS Interface Description Document describes the data sent between the SSS CSC and CLCS
applications via a calling mechanism. The CLCS FD Command Interface Description Document 84K00352
describes the interface between SSS and Command Management.

4.3.2.8 Sub-system Services Name Table Formats
SSS does not utilize any tables internally that are provided from an outside source.

4.3.3 Sub-systems Services Test Plan

The test plan provided by Jack Blackledge, John Wilkenson, and Tom Jamieson for Commanding End to
End will be used for SSS.

